部落格

2023 / 12 / 01

半導體產業如何善用 AI 驅動自動化創新?

蕭劍安‒日月光研發副總,黃翁賢,許奕中

人工智慧(AI) 正在改變世界,並在許多方面改善我們的生活。半導體產業在AI變革中扮演著關鍵角色,因為它不只提供AI應用所需的強大運算晶片,還使用AI來增強其企業內部的運營與管理、客戶服務、辦公流程、系統/產品/電路設計以及製造。在這篇文章中,我們將重點介紹AI如何協助製造自動化。

什麼是AI運算?

AI是計算機科學的分支領域,專注在創建擁有人類智慧行為的系統或機器,其目標為模擬人類的各種認知功能,包含學習、推理、解決問題、感知、語言理解等等。AI涵蓋了各種技術領域,如機器學習、深度學習、自然語言處理、計算機視覺、機器人等。

AI是如何運算的呢?

我們經常聽到AI仰賴機器學習或深度學習運算,這些不僅需要大量硬體資源,並涉及到極為複雜的神經網絡計算。那這些背後計算又如何關聯至實際的應用呢?為了避免複雜的數學公式解說,我們介紹一種相對簡單的核心概念來理解,即 AI運算中的「潛藏空間 (Latent Space) (如圖1)。儘管底層的計算非常複雜,潛藏空間通常是將高維度複雜的原始資料,轉換並濃縮至較低維度的空間,在這個轉換過程中,可降維壓縮數據並同時擷取保留原始資料的重要特徵。在潛藏空間的每一筆資料皆代表原始資料的一種特徵或特徵組合。在各種產業的應用領域中,AI技術時常與潛藏空間相關聯,例如常見的資料維度縮減、訊息壓縮、代表性學習、資料預測和資料生成等。「潛藏空間」概念已可廣泛地連結到真實世界人類的知識空間,如數值資料空間、影像資料空間、文本空間,甚至是這三種空間同時發生。

AI/機器學習如何解讀人類智慧(HI)的資料

當AI遇上製造自動化

近年來,AI應用不斷導入於製造業且應用面向持續擴大。半導體製造業可利用AI演算法、機器學習/深度學習、和資料分析等方式,來優化和自動化生產線製程。常見的AI實際應用如下:

  1. 預測性維護:透過分析自動化系統機台或設備上的感測器數據,AI可預測出該機台與設備何時需要進行維護,讓作業人員得以預先安排維護時間,減少非預期的停機,大幅減少機台問題所造成的停機時間,進而提高生產效率。在此應用場景中,迴歸模型是最常使用的方法,模型的迴歸因子變數可同時考慮各種資料型態,例如感測器的量測、記錄的時間序列、製程方法、材料等不同類型數據皆可。當完成收集這些數據後,模型在學習過程中,會將這些變數轉換至潛藏空間用於進一步運算,針對我們真實世界的實際狀況進行預測,提前預測機台或設備未來可能遇到的問題。
  2. 品質保證(QA):AI可讓系統自動解析相機圖片資料,進行即時品質控制,檢測製程中的產品是否有缺陷或異常。常用技術包含監督式學習的物體檢測模型,以及無監督式學習異常檢測模型,目標是高準確度判斷視覺圖片是否有瑕疵或異常。這些基於圖像的模型通常利用複雜深度學習的神經網絡層,將資料轉換到潛藏空間運算出機率值,再輸出異常的區域與類別。這些先進技術已可高度準確判讀圖像資料,偵測出缺陷產品,並自動移除異常產品,以確保生產品質。
  3. 製程參數優化:AI演算法可通過分析各種資料來優化製程,提升生產效率。例如,在製程開始前,AI可模擬並分析大量的歷史數據,生成最有效的設計解決方案,縮短產品開發時間。可解釋的AI模型被廣泛應用在這個階段,為使用者提供適當的決策方案。在製造過程中,AI可精細地分析過去生產的數據,且同時考量機器、配方、操作員和環境等因素,以確保最有效的參數設定。除了數值預測模型和整合式學習等常見的模型外,可涵蓋各種因子的大型神經網絡轉換模型也經常被使用。通常更複雜的模型代表運用更大的潛藏空間。這種方法已廣泛導入製造業中,顯著地提高生產效率和穩定產品品質。
  4. 機器人流程自動化(RPA):AI亦可透過RPA自動執行重複與規則性的任務,例如人工的手動資料輸入、訂單處理、財務報告和行政事務等,使人力可專注更具挑戰性和創造力的工作。常見的AI應用有圖像與文本識別,如OCR技術已可顯著地協助人類判斷圖像文字,幫助使用者快速將數字、表格和文本轉換為數據資料,並將其整合至報表系統中,甚至可輕易監控數據的變化,即時排除異常狀況。
  5. 供應鏈優化:AI也能優化整個供應鏈流程,包含採購、需求預測、訂單狀態、物流分配和財務管理等各個面向。透過AI分析資料,可預測市場趨勢,制定生產流程、有效資源分配和庫存管理。此部分最常使用數值迴歸模型、定價模型和時間序列模型,讓模型預估數量或監控數量變化,來提升工作流程效率與減少費用的開支。

AI輔助自動化可帶來甚麼效益呢?

將AI與自動化系統整合,在各種產業應用已帶來許多優點,其中最顯著的效益如下:

  • 提高準確度與精確度:利用資料分析方法,使AI透過大量資料不斷學習與調整,可提高自動化流程的準確度與精確度,避免決策錯誤,確保品質表現一致性。
  • 提高效率和生產力:AI驅動的自動化流程,可減少人工手動操作,優化產線的工作流程,讓工作任務完成更快,產量更高,整體生產效率更提升。
  • 節省成本:AI可自動化例行性和重複性的工作,使資源分配更優化,讓企業更節省勞動成本和運營成本。

AI協助日月光邁向智慧製造的未來

AI和自動化協同可創建智慧、高效和機敏的製造系統。AI的智力、學習和預測的能力可為自動化增添了許多加值應用,提供更正確的決策與更優化的流程。我們深信: 每當需要人類智慧進行判斷、操作、或決策時,必定潛藏存在以AI來協助人類智慧的無限可能,以此理念為基石,日月光傾力打造更具競爭力和生產力的智慧製造生態系統。